
A Framework for the Assessment and Training of
Software Refactoring Competences

Thorsten Haendler and Gustaf Neumann
Institute for Information Systems and New Media, Vienna University of Economics and Business (WU), Austria

{thorsten.haendler, gustaf.neumann}@wu.ac.at

Keywords: Software refactoring, knowledge and competence management, software engineering education and training

Abstract: Long-living software systems are becoming increasingly complex and difficult to maintain. Software refac-
toring is considered important to achieve maintainability and extensibility of a software system over time. In
practice, it is still often neglected, partly because of costs, the perceived risks of collateral damage and difficul-
ties of individuals working on certain components of complex software. It is therefore important for software
projects that software developers have the appropriate skills and competences to efficiently perform software
refactoring. However, so far there is no systematization of competences in software refactoring to guide in
the assessment or training of competences, e.g., for planning or evaluating training activities and paths. In
this paper, we address this need by presenting a competence framework for software refactoring by applying
Bloom’s revised taxonomy for educational objectives. In particular, we specify competence levels by combin-
ing knowledge and cognitive-process dimensions. Via a case study with two existing training environments
(i.e. a tutoring system and a serious game), we demonstrate by example that the framework can support (1)
in analyzing the competence levels addressed by the training environments and (2) in reflecting training paths
for software refactoring. Finally, we discuss the limitations and the further potential of the framework.

1 INTRODUCTION

According to studies, software maintenance ac-
counts often to 80 % or more than 90 % of soft-
ware project costs (Schach, 2007; Erlikh, 2000).
When software systems are used in changing environ-
ments over many years, such systems face an increas-
ing complexity, making it even more difficult and
time consuming to maintain them (cf. technical debt
(Kruchten et al., 2012) and software aging (Parnas,
1994)), which can result in a delay in delivering new
software functionalities. Software refactoring aims
at improving the maintainability and extensibility of
software systems by restructuring the system’s source
code while preserving the observable system behavior
(Opdyke, 1992; Fowler et al., 1999).

Although considered useful and important, refac-
toring is often omitted in practice, which is caused
by several barriers that prevent software developers
from refactoring (Tempero et al., 2017). In addition
to missing resources (such as limited time) and other
management issues, there are barriers that indicate a
lack of competences such as the perceived risks and
difficulties of performing refactoring. For example,
more complex candidates for refactoring such as bad

smells on the level of software design or architecture
(Suryanarayana et al., 2014) are not directly identifi-
able by reviewing the source code alone but require to
observe static and run-time code dependencies.

These challenges are addressed by several tools
for automation and decision-support in detecting
smells or in performing corresponding refactorings;
see, e.g., (Fernandes et al., 2016). Due to the objective
of improving the quality of the software code/design
maintained by humans, these activities can hardly be
fully automated, but require human expertise, e.g.
in terms of software architects that are aware of the
system’s design rationale and competent in software
refactoring. The success of strategies for repaying
technical debt via refactoring depends essentially on
the organizational capabilities in terms of the knowl-
edge and competences contributed by the individual
software developers and project managers.

However, besides textbooks (Fowler et al., 1999;
Suryanarayana et al., 2014) that are mediating a ba-
sic understanding of refactoring techniques, there are
only a few training environments to support software
developers in acquiring and improving practical com-
petences in software refactoring (see Section 2.1).
Moreover, so far, there is no systematization of com-

petences in software refactoring to provide guidance
in assessment or training activities, which is impor-
tant in the context of software projects or for edu-
cation and training, e.g., for measuring the learning
progress of students or software developers, planning
training activities and paths, or applying, designing
and evaluating training environments.

In this paper, we propose a framework that aims
at supporting the assessment and training of compe-
tences in the field of software refactoring. For this
purpose, the framework manifests the relevant con-
cepts and specifies the competence levels. In particu-
lar, the framework includes a concept map in terms of
a domain ontology structuring the relevant concepts
(and relations between them) for competences in the
field of software refactoring. Moreover, in order to
specify competence levels in terms of knowledge and
cognitive-process dimensions, we apply Blooms re-
vised taxonomy for educational objectives to software
refactoring. A case study with two existing training
environments demonstrates that the framework can
support the analysis of prerequisite and target com-
petences and in planning/evaluating training paths for
software refactoring. In particular, this paper provides
the following contributions.

• We propose a competence framework for soft-
ware refactoring by specifying the knowledge and
cognitive-process dimensions for competences in
software refactoring according to Bloom’s revised
taxonomy for educational objectives.

• We investigate the applicability of the framework
via a case study with two exemplary training envi-
ronments for software refactoring (a tutoring sys-
tem and a serious game).
The remainder of this paper is structured as fol-

lows. Section 2 describes the background and related
work on software refactoring and competence frame-
works. Section 3 deals with examples and concepts
of training and assessment activities. In Section 4,
we specify knowledge and cognitive-process dimen-
sions for software refactoring by applying Bloom’s
taxonomy. Then, in Section 5, we use the framework
to evaluate two exemplary training environments. In
Section 6, we discuss limitations and further poten-
tial. Section 7 concludes the paper.

2 BACKGROUND AND RELATED
WORK

This section gives a short overview of relevant
background (and related work) on software refactor-
ing (Section 2.1) and on frameworks for managing
competences (Section 2.2).

2.1 Software Refactoring and its
Challenges

Software refactoring represents a complex activity for
improving a software system’s maintainability or ex-
tensibility (Opdyke, 1992) and for repaying technical
debt (Kruchten et al., 2012). Candidates for refac-
toring are issues (such as bad smells) in the source
code, software design or architecture, or other ar-
tifacts (Fowler et al., 1999). These smells mani-
fest via certain symptoms that can be identified and
measured by applying certain metrics (e.g., depen-
dencies between code elements). Thus, the refactor-
ing process can be roughly divided into the follow-
ing two activities; cf. (Haendler and Frysak, 2018)
of (A) identifying and assessing refactoring oppor-
tunities and (B) planning and performing refactor-
ing steps. In last years, several tools have been pro-
posed to support developers, such as smell detectors
(Tsantalis et al., 2008; Moha et al., 2010) or software-
quality analyzers and design-critique tools (Camp-
bell and Papapetrou, 2013; CoderGears, 2018). De-
spite these advances, studies indicate that tool-support
is rarely used by software developers (Murphy-Hill
et al., 2012). However, besides activities that can
be potentially automated (e.g., candidate identifica-
tion or executing refactoring steps), others require hu-
man judgment and expertise. For example, the tool-
generated candidates need to be assessed to discard
false-positives (Fontana et al., 2016), or the refac-
toring activities need to be prioritized regarding the
project schedule (Ribeiro et al., 2016). However,
so far, only modest attention has been paid to soft-
ware refactoring by research in software engineer-
ing education and teaching. Besides popular text-
books such as (Fowler et al., 1999; Suryanarayana
et al., 2014) and approaches for programming lessons
(Smith et al., 2006; López et al., 2014), only a few
interactive and computer-based approaches exist that
provide intelligent and immediate feedback, such as
tutoring systems (Sandalski et al., 2011; Rolim et al.,
2017; Haendler et al., 2019) or (educational) games
(Elezi et al., 2016; Haendler and Neumann, 2019b).
So far, there exists no systematization of competences
in software refactoring (see below) to support in train-
ing and assessment.

2.2 Competence Frameworks

For managing competences or skills in general, sev-
eral generic frameworks are established. For exam-
ple, Dreyfus and Dreyfus structure skills in terms of
five hierarchical learner levels (Dreyfus and Dreyfus,
1980), from novice, via advanced beginner, compe-

tent, and proficient, to expert. Bloom et al. proposed
a taxonomy for educational objectives also structured
into six hierarchical levels (Bloom et al., 1956; Krath-
wohl, 2002); also see Section 4.1. In addition, Pa-
quette introduced a competence framework (Paquette,
2007) in which he distinguishes between actual, pre-
requisite and target competences. Moreover there are
other generic frameworks for knowledge management
such as (Alavi and Leidner, 2001) that provide dif-
ferent perspectives on and categorizations of knowl-
edge. For specifying competences in software engi-
neering and information systems, the revised version
of Bloom’s taxonomy (Krathwohl, 2002) is quite pop-
ular; see, e.g., (Britto and Usman, 2015; Bork, 2019).
There are a few approaches for applying Bloom’s
framework to software refactoring (López et al., 2014;
Haendler and Neumann, 2019a; Haendler and Neu-
mann, 2019b), which are not comprehensively sys-
tematized. For example, they do not reflect the knowl-
edge dimension for creating a two-dimensional ma-
trix. Built on these approaches, we here propose a
competence framework for training and assessment of
software-refactoring competences.

3 TRAINING AND ASSESSMENT
OF COMPETENCES IN
SOFTWARE REFACTORING

Here we describe two short scenarios for the ex-
emplary training and assessment of refactoring com-
petences (Section 3.1) and present an overview of rel-
evant basic concepts (Section 3.2).

3.1 Exemplary Scenarios for Training
and Assessment

University Course. Consider a university course on
software design and architecture located in a Mas-
ter’s study in Information Systems or Software Engi-
neering. This course includes techniques for software
refactoring of software-design issues. The course in-
structor introduces the refactoring techniques based
on the textbook (Suryanarayana et al., 2014). For
mediating practical skills for applying the techniques,
she seeks for appropriate training environments (see,
e.g., Section 5.1). In particular, for creating the train-
ing path, it is required that the complexity levels of
the activities should build on each other and finally
lead the students to the aimed learning objectives. For
this purpose, the actual competences possessed by the
students as well as the prerequisite and target compe-
tences of the training activities need to be identified.

Software Project. Also imagine a software project
confronted with technical debt (see Section 2.1).
Since the debt impedes the delivery of new features, it
is planned to repay it by software refactoring. Among
other challenges such as managing the allocation of
resources such as time and people for the refactoring
activities, the project manager has to investigate be-
forehand the organizational capabilities for perform-
ing the activities. That also includes considering the
appropriateness of the skills provided by the soft-
ware developers to efficiently apply the correspond-
ing refactoring techniques as well as the selection and
use of tool support. For this purpose, at first, the com-
petences required for repaying the debt have to be
assessed and compared with the actual competences
possessed by the development team. From this delta
the need for implementing training activities can be
derived. Based on this, the prerequisite and target
competences have to be identified to find a training
environment that can optimally support in acquiring
the aimed competences.

3.2 Conceptual Overview

In the following, we abstract from these scenarios by
describing the underlying concepts related to the tri-
angle of training/assessment, competences and soft-
ware refactoring as described in the scenarios.

Prerequisite
Competence

Actual
Competence

Target
Competence

Learner /
Engineer

Apply

Cognitive Level

Remember

Understand

Create

Evaluate

Analyze

Investigation
Code

Modification

Refactoring
Activity

Knowledge
Category

Factual
Knowledge

Conceptual
Knowledge

Procedural
Knowledge

Meta-Cognitive
Knowledge

Competence

Training
Environment

Tutoring
System

Serious
Game

Refactoring
Candidate

Training
Activity

Task

Bad Smell
Technical

Debt

Activity

Assessment

removesidenti�es

measures

performs

based on

provides

demonstrates

0..1

*

*

*

*

0..1

*

*
**

*

1

*

*

*

*

1

1

*

*

*

*

**

*

*

**
relates to

Figure 1: Concept map (domain ontology) with concepts
relevant for assessing and training competences in software
refactoring; the map extends an excerpt from an existing
ontology (Haendler and Neumann, 2019a).

The concept model depicted in Fig. 1 gives a short
overview of these basic concepts in terms of a UML
class diagram (Object Management Group, 2017). It

builds on the ontology developed in (Haendler and
Neumann, 2019a) by extending a relevant excerpt.
Basically, every Competence (see Fig. 1) can be clas-
sified by the dimensions of Knowledge Category
(i.e. four categories) and Cognitive Level (i.e.
six hierarchical levels) (Krathwohl, 2002); for de-
tails, see Section 4. A Competence can express
in terms of an Actual Competence possessed, ac-
quired or improved by a Software Engineer. More-
over, a Prerequisite Competence is required for
performing a certain Activity (optionally based
on a given Task). A Target Competence can
describe a learning objective; also see (Paquette,
2007). In turn, an Activity can demonstrate the
mastery of an Actual Competence and can man-
ifest as Training Activity optionally supported
by a Training Environment (e.g., a Tutoring
System or a Serious Game; for details, see Sec-
tion 5.1) or as Refactoring Activity, e.g., as
Investigation (e.g., for identifying or assessing
Refactoring Candidates, such as Bad Smells) or
as Code Modification (refactoring step) for remov-
ing the candidates; also see (Kitchenham et al., 1999;
Avgeriou et al., 2016). The sum of Bad Smells (debt
items) constitutes a software system’s Technical
Debt (Kruchten et al., 2012).

4 REFACTORING
COMPETENCES

In this section, we specify competence levels for
software refactoring by applying Bloom’s revised tax-
onomy for educational objectives (Krathwohl, 2002).

4.1 Bloom’s Taxonomy

Bloom’s taxonomy for cognitive educational objec-
tives (Bloom et al., 1956) represents a very popular
framework for classifying and specifying objectives
for learning and training in terms of task statements
(also see Section 2.2). In the original taxonomy, these
competence definitions are structured into six cate-
gories in terms of a hierarchy with sequencing levels
(from simple/concrete to complex/abstract). In order
to overcome limitations regarding the differentiabil-
ity of knowledge applied for each level, a revised and
extended version of the taxonomy has been proposed
(Krathwohl, 2002) that includes a second dimension
for specifying the types of knowledge, orthogonal to
the cognitive levels. By correlating the cognitive-
process dimension to the knowledge dimension in a
a two-dimensional matrix, the competences can be
specified in a more precise way via. This revised

version is especially popular in the fields of informa-
tion systems and software engineering (cf. (Britto and
Usman, 2015)) and will be used for our framework.
In the following, the structure of the four categories
of the knowledge dimension and the six levels of the
cognitive-process dimension of the revised taxonomy
(Krathwohl, 2002) is shortly described.

Four Knowledge Categories.
• Factual Knowledge represents the basic elements

a student must know to be acquainted with a dis-
cipline or solve problems in it.

• Conceptual Knowledge represents the interrela-
tionships among the basic elements within a larger
structure that enable them to function together.

• Procedural Knowledge represents the how-to-do
something in terms of methods of inquiry and cri-
teria for using skills, algorithms, techniques, and
methods.

• Meta-Cognitive Knowledge represents the knowl-
edge of cognition in general as well as awareness
and knowledge of one’s own cognition.

Six Levels of Cognitive Processes.
• Remember represents the ability of retrieving rel-

evant knowledge from long-term memory.
• Understand represents the ability of determining

the meaning of instructional messages, including
oral, written, and graphic communication.

• Apply represents the ability of carrying out or us-
ing a procedure in a given situation.

• Analyze represents the ability of breaking mate-
rial into its constituent parts and detecting how the
parts relate to one another and to an overall struc-
ture or purpose.

• Evaluate represents the ability of making judg-
ments based on criteria and standards.

• Create represents the ability of putting together to
form a novel, coherent whole or make an original
product.

4.2 Knowledge and Cognitive Processes
in Software Refactoring

In the following, we investigate how the knowledge
and cognitive-process dimensions of Bloom’s revised
taxonomy (see Section 4.1) can be applied to software
refactoring. For this purpose, we take into account
key activities of the refactoring process. Oriented
to existing process models (Leppänen et al., 2015;
Haendler and Frysak, 2018)), we subdivide the refac-
toring process into the following two basic activities
(also see Sections 2.1 and 3.2):

Table 1: Categories of the knowledge dimension of Bloom’s revised taxonomy (Krathwohl, 2002) applied to key activities in
software refactoring (A and B).

Knowledge Cate-

gory

Knowledge related to identifying and assessing refactoring can-

didates (A)

Knowledge related to planning and performing refactoring steps

(B)

(I) Factual Basic elements and terminology, such as:

• bad smells, smell symptoms, code and design metrics, the

metaphor of technical debt (TD) etc.

Basic elements and terminology, such as:

• code modification, preventive maintenance, regression test-

ing, red–green–refactor, repaying technical debt etc.

(II) Conceptual Conceptual structure of and relationships between the basic ele-

ments and terms of (I), such as:

• the combination of symptoms to identify candidates (smells;

on a conceptual level).

• the classification of refactoring candidates (bad smells) in

terms of types and categories (e.g., software design smells

(Suryanarayana et al., 2014) such as according to design

principles of ABSTRACTION or MODULARIZATION).

Conceptual structure of and relationships between the basic ele-

ments and terms of (I), such as:

• the options and combinations of code-modification tech-

niques to realize a refactoring technique (conceptually).

• the classification of refactoring techniques in terms of types

and categories (Fowler et al., 1999), such as moving code

elements (e.g., MOVEMETHOD, EXTRACTCLASS) or simpli-

fying interfaces (e.g., ADDPARAMETER, RENAMEMETHOD).

(III) Procedural Procedural aspects, such as:

• the techniques, algorithms and metrics of applying factual

and conceptual aspects (I and II) practically for identifying

refactoring candidates (bad smells).

• the handling of tool support (e.g., for automated smell de-

tection (Tsantalis et al., 2008), design critique (CoderGears,

2018) and/or technical-debt analysis (Campbell and Papa-

petrou, 2013)).

Procedural aspects, such as:

• the techniques and algorithms of applying factual and con-

ceptual aspects (I and II) practically for performing options

and sequences of refactoring steps (i.e. code modifica-

tions).

• the handling of tool support (e.g., for automatically perform-

ing refactoring steps, for automated regression testing).

(IV) Metacognitive Strategies, contextual aspects and self-knowledge, such as:

• the strategies for identifying and assessing refactoring can-

didates; e.g., for discarding false positives (Fontana et al.,

2016).

• contextual aspects of identifying and assessing refactoring

candidates such as the availability of resources (e.g., time,

costs), the project schedule and other activities.

• the awareness of one’s own capabilities and limitations in

identifying refactoring candidates (self-knowledge), e.g., re-

garding the smells covered.

• the awareness of the capabilities and limitations of software

tools (e.g., smell coverage, availability for progr. languages,

false positives; see above).

Strategies, contextual aspects and self-knowledge, such as:

• the strategies for performing refactoring, e.g., based on

paradigms and criteria for deciding how and when to refac-

tor, see e.g. (Ribeiro et al., 2016).

• contextual aspects of performing refactorings such as the

availability of resources (e.g., time, costs), the project

schedule and activities.

• the awareness of one’s own capabilities and limitations in

performing refactorings (self-knowledge), e.g., regarding

the availability of refactoring options.

• the awareness of the capabilities and limitations of software

tools (e.g., techniques covered, availability for progr. lan-

guages).

(A) identifying and assessing refactoring candi-
dates/opportunities, and

(B) planning and performing refactoring steps.

Knowledge Categories in Refactoring. The
knowledge categories describe an increasing com-
plexity from factual knowledge (e.g., about basic
elements/terms in software refactoring), via concep-
tual knowledge (including conceptual combinations
between these elements), procedural knowledge
(on how to perform the candidate-identification and
refactoring techniques) finally to meta-cognitive
knowledge (consisting of reflexive aspects about
strategies, contextual aspects and knowledge about
one’s own capabilities and limitations with regard to
refactoring activities). Table 1 reports the knowledge
categories according to Section 4.1.

Cognitive-Process Levels in Refactoring. Each
knowledge category (see above) can be cognitively
processed on six different levels (see Table 2) by the
software developer or learner respectively; from re-
membering knowledge that has been previously con-
sumed, via applying it in a concrete refactoring sit-
uation and more advanced cognitive levels such as
the analysis and evaluation, to finally creating novel
products. The combination of these two dimensions
forms a two-dimensional matrix that allows for pre-
cisely specifying competence levels. For instance, a
learner demonstrating that she can analyze and dif-
ferentiate existing options for code modifications in
order to realize a certain refactoring technique can
be assigned the competence to analyze (cognitive-
process level 4) conceptual knowledge (knowledge
category II) for performing refactoring (activity B).

Table 2: Levels of cognitive processes of Bloom’s revised taxonomy (Bloom et al., 1956; Krathwohl, 2002) applied to key
activities in software refactoring (A and B); this table extends (Haendler and Neumann, 2019b).

Process Level Cognitive Processes related to identifying and assessing refac-

toring candidates (A)

Cognitive Processes related to planning and performing refactor-

ing steps (B)

(1) Remember Remembering the knowledge for identifying and assessing refac-

toring candidates. In a refactoring context, remembering can be

important in terms of recognizing a bad smell based on given

terms of symptoms or recalling the symptoms for certain types of

refactoring candidates.

Remembering the knowledge on planning and performing refac-

toring (steps) is important in terms of recognizing a set of given

modifications as refactoring or as recalling the rules for applying

a refactoring technique.

(2) Understand Understanding the knowledge for identifying and assessing

refactoring candidates can manifest in explaining the rules/symp-

toms for identifying certain smells or in describing examples of

smell types.

Understanding the knowledge for planning and performing refac-

toring steps can be demonstrated by interpreting or explaining

techniques or algorithms for refactoring.

(3) Apply Applying the knowledge for identifying and assessing refactoring

candidates can express as concretely executing the rules for can-

didate identification in a (smaller) code base (procedural knowl-

edge) or by applying strategies to discard false-positives (meta-

cognitive knowledge).

Applying the knowledge for planning and performing refactor-

ing steps can be, for example, demonstrated by executing the

code modifications for a certain refactoring technique (procedural

knowledge) or by applying strategies for prioritizing refactorings.

(4) Analyze Analysis in the context of candidate identification/assessment

can be expressed by investigating the system’s source code and

design as well as the candidate’s structural and behavioral de-

pendencies.

For performing the refactoring steps, analysis can also be

demonstrated by checking the structural and behavioral depen-

dencies of the code fragment to be modified.

(5) Evaluate Evaluating the knowledge on identifying refactoring candidates

can be expressed by comparing and prioritizing refactoring can-

didates (according to meta-cognitive aspects).

In performing refactoring, the evaluation level is, for example,

demonstrated by comparing and selecting options/paths ad-

dressing certain candidates.

(6) Create The ability of creating a novel, coherent whole can be demonstrated by developing and/or improving tools for assisting in

smell detection and refactoring, or designing and/or revising (company’s) strategies for refactoring or managing technical

debt.

5 CASE STUDY

In order to demonstrate the applicability of the
framework, we use it to evaluate two exemplary train-
ing environments for software refactoring.

5.1 Training Environments

For the case study, we focus on two training environ-
ments, i.e. a tutoring system (Haendler et al., 2019)
(as an example for instructional learning) and a seri-
ous game (Haendler and Neumann, 2019b) (as an ex-
ample for an educational game). Both environments
are implemented as browser-based development envi-
ronments where the software artifacts (source code)
can be modified by a client without the need of in-
stalling any additional software locally. The goal of
both environments is to address active learning for
accomplishing and improving practical competences
(elaborated in detail in Section 5.2).

Tutoring System. In (Haendler et al., 2019), we in-
troduced an interactive tutoring system for software
refactoring (called REFACTUTOR). It provides im-
mediate feedback to the users regarding the func-
tional correctness and the software-design quality of
the (modified) source code. For this purpose, the re-

User

code modi�cation
(refactoring step)

feedback on
code quality and software behavior
(e.g., as-is vs. to-be design and test result)

refacTutor

Figure 2: Exercise interaction supported by the REFACTU-
TOR tutoring system; for details, see (Haendler et al., 2019).

sults of run-time regression tests as well as reverse-
engineered diagrams (reflecting the as-is design) of
the Unified Modeling Language (UML) (Object Man-
agement Group, 2017) are presented to the user and
can be compared with the intended (to-be) design
(also in UML) pre-specified by the instructor (see Fig.
2). In (Haendler et al., 2019), two exemplary exercise
scenarios are described, i.e. test-driven development
and design refactoring. For the following analysis, we
focus on the design-refactoring exercise, for which a
source-code fragment with design smells is given to
the user; in addition, run-time tests ensure the correct
behavior. The user’s task is then to remove the design
issues by restructuring the source code oriented to the
to-be design, while preserving the behavior (i.e. tests
finally have to pass). For further details and exem-
plary exercises, please see (Haendler et al., 2019).

Single-Player Mode Parallel Multi-Player Mode Alternating Multi-Player Mode

P1

P1 P2

P2

P1

time

score

time time

score score

QA QA

QA

(a) (b) (c)

Scores

Scores SP1 SP2 SQA SP1+P2

actual player

time/score SP1

tool-generated

estimated time SQA

given end time

given

score

threshold

SP1

SP2
SP1

SP2

SQASP1

Figure 3: Exemplary refactoring game modes with game constellations (top) and corresponding leader-boards with score
progression (bottom); for details, see (Haendler and Neumann, 2019b).

Serious Game. In (Haendler and Neumann,
2019b), we investigated serious games and proposed
a game for software refactoring. After each game
move (that includes a modification of the source
code), immediate feedback on the functional cor-
rectness (via integrated run-time tests) and on the
technical-debt score is reported to the user. For this
purpose, quality analyzers (QA) such as (Campbell
and Papapetrou, 2013) or (CoderGears, 2018) for
measuring the technical-debt score (calculated in
person hours required to repay the debt via refac-
toring) are integrated. From this basic move cycle
multiple game modes can be derived, of which three
exemplary are depicted in Fig. 3. For our analysis,
we focus on the single-player game mode; see (a)
in Fig. 3. As already elaborated in (Haendler and
Neumann, 2019b; Haendler and Neumann, 2019a),
the addressed competences depend a lot on the
provided decision support. For this case study, only
the test result and the debt score are provided to the
user. For further details on the game, please see
(Haendler and Neumann, 2019b).

5.2 Allocation of Competences

In the following, the competence levels in terms of the
addressed knowledge and cognitive-process dimen-
sions specified in Section 4.2 are allocated to selected
training activities supported by the two environments
(see above, Section 5.1). We distinguish between pre-
requisite (necessary to perform the activities) and tar-
get competences (a.k.a. learning objectives; see (Pa-

quette, 2007) and Fig. 1). In particular, the addressed
competences are allocated within a two-dimensional
matrix (see Fig. 4) correlating the knowledge cate-
gories (I–IV) and cognitive-process levels (1–6) for
the two basic refactoring activities (A and B; see Sec-
tion 4.2).

Competences addressed by the Tutoring System.
Performing the design-refactoring exercise provided
by REFACTUTOR (Haendler et al., 2019) requires
conceptual knowledge on different cognitive levels
and aims at mediating procedural and practical com-
petences for performing refactoring (see 1© and cells
colored yellow in Fig. 4).

In particular, the exercise requires the following
prerequisite competences (see PCTutor in Fig. 4): the
learner should already be able to remember, under-
stand and apply (levels 2, 3, and 4) techniques for
refactoring (activity B) on a conceptual level (cate-
gory II), also including at least (conceptual) hypothe-
ses on options and combinations of code modifica-
tions to realize a refactoring technique. In turn, the
training exercise aims at mediating the following tar-
get competences (see TCTutor in Fig. 4): By practi-
cally refactoring the source code for improving the
underlying software design, the learners demonstrate
the ability to practically select refactoring options and
apply algorithms for performing refactoring steps for
removing a given bad smell. This represents un-
derstanding, applying and analyzing of procedural
knowledge for performing refactoring steps (i.e. cate-
gory III, levels 2, 3 and 4, and activity B).

(I) Factual

(II) Conceptual

(III) Procedural

(IV) Metacognitive

(I) Factual

(II) Conceptual

(III) Procedural

(IV) Metacognitive

(1) Remember (2) Understand (3) Apply (4) Analyze (5) Evaluate (6) Create

Cognitive Process Dimension

A
c

ti
v

it
y

 B

K
n

o
w

le
d

g
e
 D

im
e
n

s
io

n

A
c

ti
v

it
y

 A

PCGame

TCGame

PCGame

TCGame

PCTutor PCTutor PCTutor

TCTutor TCTutor,PCGame TCTutor,PCGame

TCGame TCGame

PCGame

TCGame

1

2a

2b

3a

3b

4

Figure 4: Prerequisite (PC) and target competences (TC) of selected training exercises in a tutoring system (Tutor) (Haendler
et al., 2019) and a serious game (Game) (Haendler and Neumann, 2019b) allocated to knowledge categories (I–IV; vertical)
and cognitive-process levels (1–6; horizontal) of Bloom’s revised taxonomy for educational objectives (Krathwohl, 2002)
applied to identification and assessment of candidates (activity A; top rows) as well as to planning and performing refactoring
techniques (activity B; bottom rows).

Competences addressed by the Serious Game.
Performing the single-player game mode in (Haendler
and Neumann, 2019b) based on the test result and the
technical-debt score as decision support only, already
requires procedural knowledge both for identifying
refactoring candidates (see 2a© in Fig. 4) and for per-
forming the refactoring steps (see 2b©).

In particular, as prerequisite competences the
practical and analytic procession (i.e. levels 3 and
4) of procedural knowledge (III) for identifying and
refactoring smells are needed (activities A and B; see
cells colored blue in Fig. 4). In addition, the eval-
uation of procedures to plan/perform refactorings is
required, i.e. not only the knowledge on refactoring
options, but also on algorithms to realize them (activ-
ity B, level 5, category III). In turn, the game mode
focuses on mediating target competences in terms of
meta-cognitive knowledge (category IV) for identify-
ing candidates and planning/performing refactorings
(activities A and B). This includes the application
and analysis of strategies for selecting candidates for
refactoring (levels 3 and 4). Moreover, by competing
against the debt score, it also fosters the comparison
and critical reflection (i.e. evaluate, level 5) of options
and strategies for refactoring.

5.3 Exemplary Training Path

The case study has shown that the selected activ-
ities of the two training environments cover cer-
tain distinguishable competence levels. In particu-
lar, the design-refactoring exercise in the tutoring sys-
tem mainly addresses refactoring activities and al-
ready requires conceptual knowledge for performing
refactoring (see 1© in Fig. 4). The serious game, in
turn, demands procedural knowledge on the practical

and analytic level, by which it represents a very ad-
vanced training environment (see 2a© and 2b© in Fig.
4). Given that developers already possess conceptual
knowledge in performing refactoring techniques (in
terms of understanding the concepts), a (short) train-
ing path can be described by combining training ac-
tivities by the tutoring system and the serious game.

However, nevertheless some competence levels
are not addressed by the activities, for which other
training activities could be applied. For example, for
training (and assessing) the remembering and under-
standing of knowledge in the lower categories (of fac-
tual and conceptual knowledge; i.e. levels 1 and 2
and categories I and II), (gamified) quizzes (e.g., with
multiple-choice questions) could be applied (see 3a©
and 3b© in Fig. 4). Moreover, after playing the seri-
ous game and in order to address the highest cognitive
levels, simulations in terms of project-based learning
(capstone project (Bastarrica et al., 2017)) could, for
example, be used to plan and develop a tool for the
automated smell detection. This activity focuses on
the creation of a novel product, but also includes the
analysis and evaluation of detection criteria and met-
rics (i.e. categories III and IV and levels 4, 5 and 6 of
activity A; see 4© in Fig. 4).

6 DISCUSSION

The aim of the proposed framework was to struc-
ture and systematize competences for software refac-
toring in order to support assessment and training.
To demonstrate the applicability of the framework,
we evaluated exemplary training activities of two se-
lected environments by allocating the corresponding
prerequisite and target competences.

6.1 Limitations

For our framework, we have focused on knowledge
and cognitive-process dimensions only (Krathwohl,
2002). In addition, other perspectives on competences
can be applied. For example, Bloom’s taxonomy also
defines psychomotor and affective dimensions. More-
over, technical skills in other areas of software en-
gineering (such as regarding the usage of UML dia-
grams; see Section 5) or soft skills (Sedelmaier and
Landes, 2014) (e.g., problem-solving, communica-
tion) are important for performing refactoring in soft-
ware projects. In addition, the developer’s attitude
(e.g., motivation) can have a major impact on the out-
comes, which also can be addressed by (educational)
games (Hamari et al., 2014).

6.2 Further Potential

As described in Section 5.3, the competence frame-
work also has the potential to help with the planning
and evaluation of training paths. Based on the knowl-
edge about the actual competences possessed by the
learners and the learning objectives (target compe-
tences), a training path of multiple activities can be
designed that aims at guiding a learner from basic (i.e.
simple/concrete) to proficient (i.e. complex/abstract)
competences. This way, university courses for novice
developers (starting with low-level competences and
possibly with a stronger focus on conceptual aspects)
as well as training-on-the-job for experienced soft-
ware developers (starting with application-level com-
petences, possibly with a stronger focus on procedural
and meta-cognitive aspects) can be designed. In ad-
dition to analyzing training environments, the frame-
work could be used for assessing the actual compe-
tences of software engineers. By comparing these
with competences required for performing refactor-
ing activities, the need and requirements for training
environments could be identified. From a software-
project context it is also interesting to further investi-
gate the return-on-investment of training activities (by
comparing costs and benefits).

7 CONCLUSION

In this paper, we have introduced a framework
for the assessment and training of competences in the
field of software refactoring. In particular, the frame-
work provides a specification of competence levels
according to Bloom’s revised taxonomy for educa-
tional objectives along the dimensions of knowledge
categories and cognitive-process levels. Using the

framework, prerequisite and target competence lev-
els of training environments can be specified, which
has been illustrated via a case study with two selected
training environments (i.e. a tutoring system and a se-
rious game). In this course, it has also been shown
that the allocation of competence levels can support
in reasoning about the design of training paths for
software refactoring. In addition, we believe that the
framework also has the potential to be used for other
purposes such as for assessing the actual competences
possessed by software developers.

For future work, we plan to apply the frame-
work to evaluate via a user study (including a sur-
vey) whether and to what extent our training environ-
ments (Haendler et al., 2019; Haendler and Neumann,
2019b) can actually contribute to accomplishing and
improving competences in software refactoring.

REFERENCES

Alavi, M. and Leidner, D. E. (2001). Knowledge manage-
ment and knowledge management systems: Concep-
tual foundations and research issues. MIS quarterly,
pages 107–136.

Avgeriou, P., Kruchten, P., Ozkaya, I., and Seaman, C.
(2016). Managing technical debt in software engineer-
ing (dagstuhl seminar 16162). In Dagstuhl Reports,
volume 6. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik.

Bastarrica, M. C., Perovich, D., and Samary, M. M. (2017).
What can students get from a software engineering
capstone course? In 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering: Software
Engineering Education and Training Track (ICSE-
SEET), pages 137–145. IEEE.

Bloom, B. S. et al. (1956). Taxonomy of educational objec-
tives. vol. 1: Cognitive domain. New York: McKay,
pages 20–24.

Bork, D. (2019). A framework for teaching conceptual
modeling and metamodeling based on Bloom’s re-
vised taxonomy of educational objectives. In Proceed-
ings of the 52nd Hawaii International Conference on
System Sciences, pages 7701–7710.

Britto, R. and Usman, M. (2015). Bloom’s taxonomy in
software engineering education: A systematic map-
ping study. In Frontiers in Education Conference
(FIE), 2015 IEEE, pages 1–8. IEEE.

Campbell, G. and Papapetrou, P. P. (2013). SonarQube in
action. Manning Publications Co.

CoderGears (2018). JArchitect. http://www.jarchitect.com/
[July 31, 2019].

Dreyfus, S. E. and Dreyfus, H. L. (1980). A five-stage
model of the mental activities involved in directed
skill acquisition. Technical report, California Univ
Berkeley Operations Research Center.

Elezi, L., Sali, S., Demeyer, S., Murgia, A., and Pérez, J.
(2016). A game of refactoring: Studying the impact

of gamification in software refactoring. In WS Proc.
of XP2016, pages 23:1–23:6. ACM.

Erlikh, L. (2000). Leveraging legacy system dollars for e-
business. It Professional, 2:17–23.

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and
Figueiredo, E. (2016). A review-based comparative
study of bad smell detection tools. In Proc. of the 20th
International Conference on Evaluation and Assess-
ment in Software Engineering (EASE), pages 18:1–
18:12. ACM.

Fontana, F. A., Dietrich, J., Walter, B., Yamashita, A., and
Zanoni, M. (2016). Antipattern and code smell false
positives: Preliminary conceptualization and classifi-
cation. In Software Analysis, Evolution, and Reengi-
neering (SANER), 2016 IEEE 23rd International Con-
ference on, volume 1, pages 609–613. IEEE.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts,
D. (1999). Refactoring: improving the design of exist-
ing code. Addison-Wesley Professional.

Haendler, T. and Frysak, J. (2018). Deconstructing
the refactoring process from a problem-solving and
decision-making perspective. In Proc. of the 13th In-
ternational Conference on Software Technologies (IC-
SOFT), pages 363–372. SciTePress.

Haendler, T. and Neumann, G. (2019a). Ontology-based
analysis of game designs for software refactoring.
In Proc. of the 11th International Conference on
Computer Supported Education (CSEDU), volume 1,
pages 24–35. SciTePress.

Haendler, T. and Neumann, G. (2019b). Serious refactor-
ing games. In Proc. of the 52nd Hawaii International
Conference on System Sciences (HICSS), pages 7691–
7700.

Haendler, T., Neumann, G., and Smirnov, F. (2019). An in-
teractive tutoring system for training software refac-
toring. In Proc. of the 11th International Confer-
ence on Computer Supported Education (CSEDU),
volume 2, pages 177–188. SciTePress.

Hamari, J., Koivisto, J., and Sarsa, H. (2014). Does gami-
fication work?–a literature review of empirical studies
on gamification. In Proc. of 47th Hawaii International
Conference on System Sciences (HICSS), pages 3025–
3034. IEEE.

Kitchenham, B. A., Travassos, G. H., Von Mayrhauser, A.,
Niessink, F., Schneidewind, N. F., Singer, J., Takada,
S., Vehvilainen, R., and Yang, H. (1999). Towards an
ontology of software maintenance. J. Software Main-
tenance: Research and Practice, 11(6):365–389.

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy:
An overview. Theory into practice, 41(4):212–218.

Kruchten, P., Nord, R. L., and Ozkaya, I. (2012). Technical
debt: From metaphor to theory and practice. IEEE
software, 29(6):18–21.

Leppänen, M., Lahtinen, S., Kuusinen, K., Mäkinen, S.,
Männistö, T., Itkonen, J., Yli-Huumo, J., and Lehto-
nen, T. (2015). Decision-making framework for
refactoring. In Proc. of 7th International Workshop
on Managing Technical Debt (MTD), pages 61–68.
IEEE.

López, C., Alonso, J. M., Marticorena, R., and Maudes,
J. M. (2014). Design of e-activities for the learning
of code refactoring tasks. In Computers in Education
(SIIE), 2014 International Symposium on, pages 35–
40. IEEE.

Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur,
A.-F. (2010). Decor: A method for the specification
and detection of code and design smells. IEEE Trans-
actions on Software Engineering, 36(1):20–36.

Murphy-Hill, E., Parnin, C., and Black, A. P. (2012). How
we refactor, and how we know it. IEEE Transactions
on Software Engineering, 38(1):5–18.

Object Management Group (2017). Unified Mod-
eling Language (UML), Superstructure, Version
2.5.1. https://www.omg.org/spec/UML/2.5.1 [July 31,
2019].

Opdyke, W. F. (1992). Refactoring object-oriented frame-
works. University of Illinois at Urbana-Champaign
Champaign, IL, USA.

Paquette, G. (2007). An ontology and a software framework
for competency modeling and management. Educa-
tional Technology & Society, 10(3):1–21.

Parnas, D. L. (1994). Software aging. In Proc. of 16th Inter-
national Conference on Software Engineering, pages
279–287. IEEE.

Ribeiro, L. F., de Freitas Farias, M. A., Mendonça, M. G.,
and Spı́nola, R. O. (2016). Decision criteria for the
payment of technical debt in software projects: A sys-
tematic mapping study. In ICEIS (1), pages 572–579.

Rolim, R., Soares, G., D’Antoni, L., Polozov, O., Gul-
wani, S., Gheyi, R., Suzuki, R., and Hartmann, B.
(2017). Learning syntactic program transformations
from examples. In Proceedings of the 39th Inter-
national Conference on Software Engineering, pages
404–415. IEEE Press.

Sandalski, M., Stoyanova-Doycheva, A., Popchev, I., and
Stoyanov, S. (2011). Development of a refactoring
learning environment. Cybernetics and Information
Technologies (CIT), 11(2).

Schach, S. R. (2007). Object-oriented and classical soft-
ware engineering, volume 6. McGraw-Hill New York.

Sedelmaier, Y. and Landes, D. (2014). Software en-
gineering body of skills (SWEBOS). In 2014
IEEE Global Engineering Education Conference
(EDUCON), pages 395–401. IEEE.

Smith, S., Stoecklin, S., and Serino, C. (2006). An in-
novative approach to teaching refactoring. In ACM
SIGCSE Bulletin, volume 38, pages 349–353. ACM.

Suryanarayana, G., Samarthyam, G., and Sharma, T.
(2014). Refactoring for software design smells: Man-
aging technical debt. Morgan Kaufmann.

Tempero, E., Gorschek, T., and Angelis, L. (2017). Bar-
riers to refactoring. Communications of the ACM,
60(10):54–61.

Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A. (2008).
JDeodorant: Identification and removal of type-
checking bad smells. In Proc. of 12th European Con-
ference on Software Maintenance and Reengineering
(CSMR 2008)., pages 329–331. IEEE.

