
Ontology-based Analysis of Game Designs for Software Refactoring

Thorsten Haendler and Gustaf Neumann
Institute for Information Systems and New Media,

Vienna University of Economics and Business (WU), Austria
{firstname.lastname}@wu.ac.at

Keywords: Software Refactoring, Gamification, Serious Games, Game Design, Game Analysis, Domain Ontology,
Software Engineering Education and Training.

Abstract: Acquiring practical competences in computer programming and software engineering is challenging. Software
refactoring, in particular, is considered an important and useful quality-assurance technique, but due to the
perceived difficulties and risks of performing it, often neglected in practice. Still, it received little attention
by software engineering education and training so far. Games are a popular means for fostering motivation as
well as mediating and improving practical competences by providing an enjoyable and playful environment.
However, for instructors it is challenging to develop and apply game designs that address certain learning
objectives, which is important for integrating the game into existing or planned learning and training paths,
e.g. in the framework of university courses or training units for (experienced) software developers. In this
paper, we propose an ontology that aims to support the analysis and design of games in the field of software
refactoring. We apply a structured process for creating a unifying domain ontology bridging core concepts
from three related fields, i.e. game design (a), software refactoring (b), and competence management (c). The
resulting ontology is then represented as a meta-model in terms of a UML class diagram and reflects concepts
important for refactoring-game designs. We describe ontology-based options for game design and illustrate
the use of the ontology by analyzing existing refactoring-gaming approaches. In addition, we reflect applying
the ontology for reasoning about novel game designs and discuss further potential of the approach.

1 INTRODUCTION

Acquiring practical competences in computer pro-
gramming and software engineering is challenging,
since it requires in-depth knowledge and experience.
Software refactoring, in particular, is considered an
important and useful quality-assurance technique to
reduce a system’s maintenance costs by improving
its internal quality (Kruchten et al., 2012), but which
is difficult to acquire for software developers. Due
to the perceived difficulties and risks of perform-
ing it, refactoring is often avoided in practice (Tem-
pero et al., 2017). Even though textbooks with rules
and best practices are available (Fowler et al., 1999;
Suryanarayana et al., 2014), they can barely medi-
ate the skills for actually reviewing larger code bases
for refactoring opportunities or performing non-trivial
refactorings. Still, it received little attention by soft-
ware engineering education and training so far; see,
e.g. (Haendler et al., 2019).

Games are in general a popular means for fos-
tering motivation as well as mediating and improv-
ing practical competences by providing a playful en-

vironment (Hamari et al., 2014). In recent years,
several approaches for serious gaming and gamifica-
tion in programming and software engineering have
been proposed; for an overview, see (Pedreira et al.,
2015; Miljanovic and Bradbury, 2018; Alhammad
and Moreno, 2018). In turn, in the field of software
refactoring, so far only a few gaming approaches can
be identified; see, e.g. (Raab, 2012; Elezi et al., 2016;
Haendler and Neumann, 2019).

However, for instructors there are no guidelines or
tools helping to develop and apply game designs that
address certain learning objectives, which is impor-
tant for integrating the game into existing or planned
learning and training paths, e.g. university courses, or
training units for software developers. In order to be
able to systematically design and develop games for
refactoring with the purposes of addressing certain
practical competences or of fostering the motivation
to perform refactorings, the conceptual field needs to
be systematically structured.

In this paper, we propose an approach for the de-
velopment of an ontology for designing and analyz-
ing software-refactoring games. For this purpose, we

reuse and combine relevant concepts from three re-
lated domain areas, i.e. game design (a), software
refactoring (b), and competence management (c). In
particular, it was useful, to break these domain areas
further down to 5 different domains. The resulting do-
main ontology is documented in terms of a UML class
diagram and aims to support in better understanding
the concepts for designing games. For this purpose,
besides the concepts and concept relations, also de-
sign options in terms of ontology instances are de-
scribed in detail. This way, the ontology represents a
step towards the structured design of games for soft-
ware refactoring. The applicability of the ontology
is illustrated via the ontology-based analysis of three
existing game designs for software refactoring. In ad-
dition, we also reflect how the ontology can be used
to develop novel game designs. This paper provides
the following contributions:

• development of a domain ontology for represent-
ing relevant concepts for game designs in software
refactoring.

• documentation of the refactoring-game ontology
as a meta-model in terms of a UML class dia-
gram including a description of game-design op-
tions (i.e. ontology instances).

• ontology-based analysis of (exemplary) existing
refactoring-game designs.

Fig. 1 gives a high-level overview of the approach.
For developing a domain ontology for software-
refactoring games, relevant concepts of three related
domain areas (i.e. software refactoring, competence
management, and game design) are reused, com-
bined and extended (where necessary). The result-

Game Design

Game Design

Development

of novel games

Game Design

«instances of»
Analysis of

existing games

Competence

Prerequisite
Competence

Actual
Competence

Target
Competence

Level

Learner

Application

Cognitive Level

Knowledge

Comprehension

Creation

Evaluation

Analysis

Instructor

Information

Reward

Achievement

Game

Leader Board

View

Game Level

Rule Action

Mission

Punishment

Player

IndividualTeam

Interaction

Collaboration Competition

Feedback
Decision
Support

Technical
Debt

(Software)
System

Refactoring
Candidate

Smell
Category

Analysis Tool

Quality
Analyzer

Refactoring
Step

Code Artifact

Investigation
Activity

Code Modification
Activity

Maintenance
Activity

Engineer

Symptom
Technical
Debt Item

Smell

Move

Test
Framework

Metric

GUI

Hint

Evaluation

Analysis

Reused (or Modified)
Concept

Subdomain
Game Design

Rule

Task

Time
Constraint

Time
Measurement

Assessment

+

+

Learning Unit

Aesthetic
Aspect

Mechanics

Dynamics

Aesthetics

SE Tool

Task

Editor

Goal

+

+

+

+
+

+ +

+

+

+

+ +

+

+

++

+

+

+

+

+ + + +

+

+

+

+

Extended
Concept

Game Design
Competence
Management

Managing

Technical Debt

Levels of Learning
Objectives

Software
Maintenance

oriented to and partially reused from
(Hunicke et al. 2004,García et al. 2017)

oriented to and partially reused from
(Paquette 2007)

oriented to and partially reused
from (Kitchenham et al. 1999)

oriented to and partially reused from
(Avgeriou et al. 2016)

reused from
(Bloom et al. 1956)

5

4

1 2 3
1

Game Type
+

*

*

1

*
*

*

*

*
*

*
*

**

0..1

1

1

*

0..1

0..1

1

*

*
*

* *

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

* *

*

*

*

* *

*

*

*

*

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

0..1*

0..1

1

*

*

1

*
*

performs

de�nes

input
output

performs

performs

based on

executes

relates to

relates to

Activity
+

0..1

* *

processes

performs

uses

based on

measures
outcomes

presents

integrates

provides

applies

applies

performs
usesbased on

Further diagram notations compliant
with UML

Legend

*

*

*

* removesGame-Design
Concepts

Concepts of Competence
Management

Refactoring
Concepts

Refactoring-Game Ontology

Figure 1: Conceptual overview of developing a domain on-
tology for analysis and design of refactoring games (for the
resulting ontological model, see Fig. 2).

ing ontology can be seen as an abstraction of concrete
refactoring-game designs. Existing game designs (i.e.
ontology instances) can be analyzed and classified by
the ontology. Moreover, the ontology can support in
reasoning about the development of novel game de-
signs.

Structure. The remainder of this paper is structured
as follows. In Section 2, we reflect on background
(and related work) in software refactoring, games for
programming (and refactoring in particular), and the
use of ontologies (for game design). Section 3 de-
tails the process of creating the domain ontology of
game designs for software refactoring. In Section 4,
we present the resulting ontological model and de-
scribe design options for its instantiation. Section 5
illustrates, how the ontology can be applied for ana-
lyzing and classifying existing gaming approaches. In
Section 6, we reflect on applying the ontology for rea-
soning about designing novel approaches and discuss
further potential. Section 7 concludes the paper.

2 BACKGROUND AND RELATED
WORK

2.1 Refactoring and its Challenges

Refactoring is an important quality-assurance
technique that helps improving the code quality re-
garding its maintainability by restructuring the source
code without changing the system’s external behavior
(Opdyke, 1992; Fowler et al., 1999). Despite con-
sidered important and helpful, refactoring is often ne-
glected in practice (Tempero et al., 2017). The refac-
toring workflow can be roughly structured into the
following tasks:
(1) identifying refactoring candidates (a.k.a. opportu-

nities) in terms of smells or technical-debt items
(Kruchten et al., 2012) and

(2) planning and performing the refactorings step se-
quences (Fowler et al., 1999).

In this process, software developers are supported by
several analysis tools, such as quality analyzers, e.g.
SonarQube (Campbell and Papapetrou, 2013), and
refactoring tools, e.g. JDeodorant (Tsantalis et al.,
2008) (for identifying refactoring candidates such as
smells or for performing refactorings), or test frame-
works, e.g. the XUnit framework, for automated run-
time regression testing (in order to ensure that no er-
rors have been introduced). Despite these advances
regarding tool support, developers still perceive dif-
ficulties in the refactoring process and a lack of ade-

quate tool support, which often prevents them from
performing refactoring in practice (Tempero et al.,
2017). A way to address these challenges can be seen
in fostering developers’ motivation and practical com-
petences in refactoring.

2.2 Game Designs for (Training)
Programming

In recent years, several game designs for training
skills in programming and software engineering have
been proposed; for serious gaming, see, e.g. (Mil-
janovic and Bradbury, 2018), for gamification, (Pe-
dreira et al., 2015; Alhammad and Moreno, 2018).
However, so far, only a few games and game designs
exist for software refactoring in particular. These ap-
proaches will be analyzed in Section 5. A goal of this
paper is to identify design options based on ontologi-
cal concepts for creating and analyzing game designs.
For this purpose, we adopt and reuse existing frame-
works, such as the MDA framework which structures
game design through the perspectives of mechanics,
dynamics and aesthetics (Hunicke et al., 2004). In
addition to this, design options also depend on condi-
tions and aspects in the application areas and purposes
of the game, e.g. the fields of software refactoring as
well as of learning and training.

2.3 Ontologies

Originating from the philosophical discipline of meta-
physics, an ontology represents a structure of entities
with the purpose of organizing knowledge (in a cer-
tain domain) and managing complexity. In contrast
to automatically processed ontologies such as web
knowledge graphs (Paulheim, 2017), visually repre-
sented ontologies for human consumption need to be
manageable in size and are often less formally spec-
ified. For example, in information systems research
and practice, ontological models often are understood
as conceptual models with the objective to share a
common understanding of structure of and relation-
ships between concepts in a certain domain (Guiz-
zardi et al., 2002). Concepts are often represented as
classes related to other classes, e.g. in terms of a UML
class diagram (Object Management Group, 2015).

3 ONTOLOGY DEVELOPMENT

In developing the ontology, we are guided by the
structured process proposed by (Noy et al., 2001) con-
sisting of seven distinguished steps from defining the
scope of the ontology, via considering the reuse of

existing ontologies to defining classes and class re-
lations. In Section 3.1, we describe the scope of the
domain ontology and reflect the ontologies identified
and considered for reuse. In Section 3.2, we explain
how the classes and relations have been defined and
what kinds of aspects had to be extended. The result-
ing ontology is presented in Section 4.1 and the op-
tions for creating ontological instances are elaborated
in Section 4.2. In Section 5, the ontology is applied to
analyze existing gaming approaches.

3.1 Ontology Scope and Reuse of
Existing Ontologies

The scope of the ontology is defined by the question:
How to design games for imparting practical compe-
tences for software refactoring? (see Section 1).

For this purpose, concepts from the following
three fields are relevant:

• Game Design (as the interaction environment),
• Software Refactoring (as the technical domain),

as well as
• Competence Management (since the games aim

at mediating certain competences to users).
In these three fields, already ontologies and/or tax-
onomies are established that can be reused as ex-
plained in the following.

Game Design. The MDA framework for structur-
ing the design concepts from the three perspectives
mechanics, dynamics and aesthetics is quite popular
and represents a quasi-standard for game design (Hu-
nicke et al., 2004). In particular, mechanics comprise
the basic game components such as actions performed
by the player and the rules. The dynamics represent
the run-time behavior of the game including feedback
mechanisms and user interaction. Aesthetics, finally
reflect (the more abstract) aspects of emotional and
motivational responses evoked in the player (Hunicke
et al., 2004). However, the framework reflects the
important perspectives for game design, but does not
represent the concepts in detail in terms of a domain
ontology. (Garcı́a et al., 2017) builds upon these per-
spectives and refines them by presenting a framework
for the introduction of gamification in software engi-
neering, which also includes a structured domain on-
tology. With the focus on gamification in software
engineering, i.e. how software-engineering tools (ap-
plied in practice) can be extended by gamification el-
ements, multiple concepts are also related to games in
software refactoring (see Section 3.2). We combine
both frameworks to cover a large part of concepts of
game design.

Software Refactoring. We have identified two pop-
ular ontologies and concept formations in the field of
software refactoring. First, refactoring can be classi-
fied as a preventive maintenance activity. The ontol-
ogy of software maintenance proposed by (Kitchen-
ham et al., 1999) structures important software-
maintenance activities and in particular covers differ-
ent tasks. Second, from the perspective of technical
debt management, the candidates for refactoring (e.g.
code smells) are kinds of technical debt items. The
ontology proposed by (Avgeriou et al., 2016) rep-
resents the concepts relevant for managing technical
debt. A combination of both covers some important
concepts in the field of refactoring.

Competence Management. For competence man-
agement (and learning objectives), popular ontologies
and/or taxonomies can be found. First, Paquette pro-
vides an ontology for competence management (Pa-
quette, 2007). In this work, competences are special-
ized into actual, prerequisite and target competences
(a.k.a. learning objectives). Complementing this on-
tology, Bloom’s taxonomy (Bloom et al., 1956) pro-
vides details on complexity levels of (cognitive) learn-
ing objectives in terms of a hierarchical order of six
levels. In (Krathwohl, 2002), a revised version has
been proposed, which is applied for our ontology. The
taxonomy is especially popular for specifying (levels
of) competences in engineering education and train-
ing (Britto and Usman, 2015; Masapanta-Carrión and
Velázquez-Iturbide, 2018).

3.2 Defining Classes and Relations

The five ontologies from different domains identified
in Section 3.1 cover multiple concepts in the field of
(educational) software-refactoring games. In the next
step, we extracted the concepts relevant for this pur-
pose and checked them for synonyms and homonyms,
for further overlaps and possible connection points
between the concepts via relationships (such as user
roles, kinds of actions or artifacts). While defin-
ing classes, class hierarchies and relationships be-
tween classes, it became obvious that a few exten-
sions would be necessary. In particular, refactoring-
related concepts (such as smells, analysis and analysis
tools), basic educational concepts (such as learner, in-
structor, task, activity, learning unit, and evaluation)
as well as further concepts oriented to game design
(such as move, assessment, user interaction and feed-
back) have been extended in order to cover the con-
ceptional scope for refactoring-game design. Details
on these extensions are presented in Section 4.

4 REFACTORING-GAME
ONTOLOGY

For documenting the ontological concepts for
refactoring-game designs, we (1) structure the con-
cepts in terms of a meta-model (see Section 4.1) and
(2) reflect on options for instantiating the game ontol-
ogy (see Section 4.2).

4.1 Ontology Representation

The domain ontology resulting from the applied de-
velopment process (see Section 3) is documented as a
meta-model in terms of a class diagram of the Uni-
fied Modeling Language (UML2) (Object Manage-
ment Group, 2015). Fig. 2 depicts the resulting on-
tology.1 The class diagram allows for organizing the
identified concepts as classes and their relationships
in terms of generalizations and kinds of associations,
see (Object Management Group, 2015). The 67 con-
cepts covered by the domain ontology are (visually)
structured into the five sub-domains (see 1© to 5© in
Fig. 2) identified for containing concepts relevant for
game designs in software refactoring (see Table 1).

Table 1: Ontology sub-domains in Fig. 2.

No Sub-Domain Reference

1© Game Design (Hunicke et al., 2004; Garcı́a

et al., 2017)

2© Competence Management (Paquette, 2007)

3© Levels of Learning Objec-

tives

(Bloom et al., 1956)

4© Software Maintenance (Kitchenham et al., 1999)

5© Managing Technical Debt (Avgeriou et al., 2016)

The sub-domains are connected via several links
between concepts, e.g. in terms of relationships. Mul-
tiple concepts (classes) and relationships have been
reused (or slightly modified regarding name or rela-
tionships for the purpose of the new contextualiza-
tion). A few concepts (marked with dashed border
and plus sign) have been added in order to (1) al-
low concept combination and/or (2) provide concepts
that are particularly important for game design in soft-
ware refactoring, but are not covered by the selected
reused (sub-) domain ontologies. The notations ap-
plied in the diagram are compliant with UML, e.g.
class names in italic (such as Competence in 2© in
Fig. 2) indicate abstract concepts that do not allow in-
stantiation directly, but via sub-classes.

In the following, hubs in the diagram (see Fig. 2)
with connections between key concepts from multiple

1The ontological model is also available for down-
load as SVG file from http://refactoringgames.com/
ontology.

http://refactoringgames.com/ontology
http://refactoringgames.com/ontology

Competence

Prerequisite
Competence

Actual
Competence

Target
Competence

Level

Learner

Application

Cognitive Level

Knowledge

Comprehension

Creation

Evaluation

Analysis

Instructor

Information

Reward

Achievement

Game

Leader Board

View

Game Level

Rule Action

Mission

Punishment

Player

IndividualTeam

Interaction

Collaboration Competition

Feedback
Decision
Support

Technical
Debt

(Software)
System

Refactoring
Candidate

Smell
Category

Analysis Tool

Quality
Analyzer

Refactoring
Step

Code Artifact

Investigation
Activity

Code Modification
Activity

Maintenance
Activity

Engineer

Symptom
Technical
Debt Item

Smell

Move

Test
Framework

Metric

GUI

Hint

Evaluation

Analysis

Reused (or Modified)
Concept

Subdomain
Game Design

Rule

Task

Time
Constraint

Time
Measurement

Assessment

+

+

Learning Unit

Aesthetic
Aspect

Mechanics

Dynamics

Aesthetics

SE Tool

Task

Editor

Goal

+

+

+

+
+

+ +

+

+

+

+ +

+

+

++

+

+

+

+

+ + + +

+

+

+

+

Added
Concept

Game Design
Competence
Management

Managing

Technical Debt

Levels of Learning
Objectives

Software
Maintenance

oriented to and partially reused from
(Hunicke et al. 2004,García et al. 2017)

oriented to and partially reused from
(Paquette 2007)

oriented to and partially reused
from (Kitchenham et al. 1999)

oriented to and partially reused from
(Avgeriou et al. 2016)

reused from
(Bloom et al. 1956)

5

4

1 2 3
1

Game Type
+

*

*

1

*
*

*

*

*
*

*
*

**

0..1

1

1

*

0..1

0..1

1

*

*
*

* *

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

* *

*

*

*

* *

*

*

*

*

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

0..1*

0..1

1

*

*

1

*
*

performs

de�nes

input
output

performs

performs

based on

executes

relates to

relates to

Activity
+

0..1

* *

processes

performs

uses

based on

measures
outcomes

presents

integrates

provides

applies

applies

performs
usesbased on

Further diagram notations compliant
with UML

Legend

*

*

*

* removes

Figure 2: Domain ontology for game design in software refactoring combining concepts from related sub-domains.

sub-domains are described in detail as well as the ex-
tensions by new concepts are argued. For further de-
tails on reused concepts not explained in detail, please
consult the research papers that have introduced the
corresponding sub-domain ontologies (Table 1).

User Roles and Competences. A user of refactor-
ing games acts in three roles, i.e. first, in the role
of a Player that performs game moves and aims
at accomplishing the goal of the game (see 1© in
Fig. 2), then in the role of a Learner that performs
training Activities (that optionally base on a Task)
and aims at acquiring and improving their Actual
Competences (in software refactoring; see 2©), and
finally in the role of an Engineer that performs refac-
toring activities or, in general, maintenance-related
activities (Kitchenham et al., 1999) (see 4©). This
way, the player can be seen as a kind of learner
and engineer (i.e. super-classes of player). Be-
sides these user roles, moreover an Instructor de-
fines tasks that are oriented to certain Prerequisite
Competences (necessary to perform the activity) and
aim at mediating certain Target Competences (i.e.
learning objectives) to the learner. Each kind of
Competence can be characterized by the complex-
ity Levels, e.g. the Cognitive Level; see (Bloom
et al., 1956) and 3© in Fig. 2.

User Activities and Interaction. While playing a
game, a user performs Actions that are on the one
hand part of a game Move (from a gaming perspec-
tive, see 1© in Fig. 2) and on the other hand part
of training Activity (optionally) based on a Task
set by an Instructor(from learning perspective, see

2©). Moreover, in the context of software refactor-
ing, an action can be a Maintenance Activity that
can be expressed as an Investigation Activity or
a Code Modification Activity (e.g. in terms of a
concrete Refactoring Step, see 4©; in (Kitchen-
ham et al., 1999) defined as enhancement and more
specific as changed implementation). A Player
can be an Individual or a Team (see 1©). Each
player can be part of Interactions between multi-
ple players, which can express as Collaboration or
Competition. This way, for instance, also competi-
tions between teams can be captured.

Artifacts and Information. Artifacts (such as
the software system’s source Code, test specification
or documentation) are used as input or output of
Actions (e.g. Maintenance Activity) performed
by users (see 4© in Fig. 2). Training- and game-play-
related artifacts are represented by Views (from tech-
nical perspective a.k.a. widgets (Garcı́a et al., 2017))
such as Editors or Leaderboards (see 1©) . The
views also present other kind of Information, e.g.
in terms of Decision Support for supporting users

in refactoring activities (such as Hints, e.g. the loca-
tion of a refactoring candidate) or in terms of other
Feedback to user activities such as the accomplished
Achievement (e.g. expressed as Rewards via badges
or points).

Smells and Analysis. Each Refactoring
Candidate (a.k.a. refactoring opportunity) can
be seen as a Technical Debt Item that is part
of a System’s Technical Debt; see 5© in Fig. 2
and for further details, e.g. (Kruchten et al., 2012;
Avgeriou et al., 2016)). Among others, Smells are
specific refactoring candidates that can be allocated
to a certain Smell Category (such as code or archi-
tecture smells). A refactoring candidate (e.g. a smell)
can be removed via one ore multiple Refactoring
Steps (see 4©). Each debt item manifests via certain
Symptoms (Fowler et al., 1999) that are based on
(and can be measured via) corresponding Metrics

5©. These metrics can be used during Analysis
(e.g. for smell detection), which represents a kind
of Investigation Activity (see 4©). In general,
different kinds of analysis can be performed by
Analysis Tools, which are specific Software
Engineering (SE) Tools (see 1© and 5©) such as
Quality Analyzers (identifying debt items such
as smells or measuring the systems technical debt,
see, e.g. (Fontana et al., 2012)) or Test Frameworks
(ensuring that no error has been introduced). The
concepts in the scope of smells and analysis tools
have been extended, since they are essential concepts
for the refactoring workflow, see, e.g. (Haendler and
Frysak, 2018). Further details on concrete tools are
provided in Section 4.2.

Evaluation and Assessment. The terms evaluation
and assessment are often used synonym. Also in
the field of games and training/education, especially
with regard to programming exercises, the meanings
are manifold, since it can be seen from different per-
spectives with different purposes. For the purposes
of this ontology, we distinguish between the (auto-
mated) Assessment in the gaming context and the
Evaluation performed by the Instructor for mea-
suring the learner’s activity performance. In par-
ticular, an Assessment (see 1© in Fig.2) measures
the Player’s Moves by executing the defined Rules
of game play. In turn, an Evaluation is applied
to evaluate the outcomes of the learner’s activities
against the defined task, e.g. in order to determine the
learner’s actual competences (see above and 2©). It
may be performed by the instructor alone or also sup-
ported by a tool-based Analysis (see above). A spe-
cific concept of Assessment is Time Measurement,

since many games in general require performing ac-
tions or moves in a given time frame (see associ-
ated class Time Constraint) or the time is a crucial
factor in competitions between multiple players (see
above).

Mechanics, Dynamics and Aesthetics. The iden-
tified concepts of game design can also be loosely
divided into the perspectives of the MDA frame-
work (Hunicke et al., 2004). For instance, Action,
Move, Rule, Goal as basic game elements can be
allocated to Mechanics (see 1© in Fig.2). Dynam-
ics comprise all concepts directly impacting the run-
time behavior of the game, i.e. for instance the kinds
of Feedback and Decision Support as well as the
player Interaction. Aesthetics are expressed in
the game Mission associated to one or multiple
Aesthetic Aspects.

4.2 Ontology Instances and
Game-Design Options

Concrete game designs can be seen as instances of
the ontology (also see Fig. 1), while they differ in
terms of the concept values. By structuring options of
these values, e.g. in terms of possible enumerations,
a knowledge base can be built (Noy et al., 2001) that
can serve as foundation for analyzing and for design-
ing gaming approaches (see Sections 5 and 6). For
this purpose, we will examine the following aspects,
which are especially important for refactoring-related
games: competence levels for refactoring tasks, smell
types, analysis and assessment (including analysis
tools), options for decision support, aesthetic aspects
(w.r.t. the MDA framework (Hunicke et al., 2004)),
and game types. Instances of other (more generic)
concepts such as kinds of Views (e.g. bar charts, ac-
tivity feeds etc.) or kinds of Rewards (e.g. badges,
points etc.) are not in scope of this section. Explana-
tions on these can be found in research literature on
gamification and/or game-based learning in general,
see, e.g. (Garcı́a et al., 2017).

Refactoring Tasks and Competence Levels. From
the perspective of software developers, refactoring
can be basically distinguished into the two following
tasks (or steps; also see Section 2.1).
(A) identify and assess refactoring candidates, and
(B) plan and perform refactoring steps.
Table 2 provides descriptions on the competence lev-
els (see 3© in Fig. 2) of these tasks according to
Bloom’s revised taxonomy of cognitive learning ob-
jectives (Krathwohl, 2002). Practical competences as

Table 2: Competences in software refactoring (Haendler and Neumann, 2019) structured by levels of Bloom’s taxonomy of
cognitive learning objectives.

Level Competences related to identifying and assessing refactoring

candidates (A)

Competences related to planning and performing refactoring

steps (B)

(1) Knowledge Reading and remembering the documented knowledge on

rules/symptoms for identifying bad smells.

Reading and remembering the documented knowledge on rules

for planning and performing refactoring (steps).

(2) Comprehension Understanding the rules/symptoms for identifying bad smells. Understanding the rules for planning and performing refactoring

(steps)

(3) Application Identifying refactoring candidates (e.g. bad smells) according to

rules/symptoms (in small synthetic examples).

Performing corresponding refactoring steps (in small synthetic

examples).

(4) Analysis Analyzing the system’s source code and design as well as the

candidate’s structural and behavioral dependencies while iden-

tifying refactoring candidates (in larger code base).

Analyzing the system’s source code and design as well as the

candidate’s structural and behavioral dependencies while per-

forming corresponding sequences of refactoring steps (in larger

code base).

(5) Evaluation Comparing and prioritizing refactoring candidates (according to

applied paradigm, such as risk or relevance).

Comparing and selecting options/paths for performing the refac-

toring (steps).

(6) Creation Developing and/or improving tools for assisting in smell detection and refactoring, or designing and/or revising (company’s)

strategies for refactoring or managing technical debt.

targeted by serious games or gamification approaches
can be located on levels 3 to 6 (see Table 2). Lev-
els 1 and 2 are more knowledge-oriented. For further
details, also see (Haendler and Neumann, 2019).

Smell Types and Learning Objects. Accord-
ing to the different quality aspects (w.r.t. arti-
fact types and/or abstraction levels), several Smell
Categories and types of Technical Debt Items
(see 5© in Fig. 2) can be distinguished (Alves et al.,
2016), such as the following:

• code smells (Fowler et al., 1999)
• software design or architecture smells (Surya-

narayana et al., 2014)
• test smells (Bavota et al., 2012)
• requirements smells (Femmer et al., 2017)
• model smells (Misbhauddin and Alshayeb, 2015)

Each Smell Type (or Smell Category) can be seen
as a learning object, i.e. as a content item or chunk
for a learning unit. For instance, such as a unit for
MODULARIZATION smells as sub-group of software
design smells, see (Suryanarayana et al., 2014).

Analysis and Assessment. According to the types
of smells (see above) and their symptoms, different
quality Metrics can be applied (Kan, 2002) to iden-
tify them, also in different artifact types. For this pur-
pose, two types of Quality Analyzers (see 5© in
Fig. 2) are exemplary listed that pursue the (mostly
static) analysis of the internal quality of system arti-
facts:

• Smell detection and refactoring recommendation
tools that support identifying smell and refactor-
ing candidates via symptoms based on certain
metrics; e.g. JDeodorant (Tsantalis et al., 2008)
or DECOR (Moha et al., 2010).

• Technical-debt analyzers applying different met-
rics for measuring and quantifying a system’s debt
in terms of person hours to fix (repay) the debt;
e.g. SonarQube (Campbell and Papapetrou, 2013)
JArchitect (CoderGears, 2018) or NDepend (ZEN
PROGRAM, 2018).

Besides the analysis of the internal code quality, test
frameworks (such as XUnit or scenario tests) are com-
monly in use in terms of run-time regression tests that
ensure that no errors have been introduced while mod-
ifying the source code. As described above (Section
4.1), tool-supported analysis can be applied for as-
sessing and evaluating the user’s actions and moves.
The choice of tool and what information provided to
the user (in terms of decision support and feedback)
impacts the addressed refactoring competences (see
below).

Decision Support and Learning Objectives. De-
pending on the analysis information provided by anal-
ysis tools (see above) presented to the user in terms of
decision support and feedback, different competences
are addressed (see Table 3).

Via the integration of regression-testing frame-
works, the functional correctness (w.r.t. the specified
tests) can be assessed. This way, the low-level task
(1) in Table 3 of performing code modifications that
do not change the external behavior of the system (i.e.
refactoring) can be automatically assessed, which lays
the basis for further tasks and assessments. In order
to address the competence of (2) identifying refactor-
ing candidates (e.g. code smells), the technical debt
score can be provided to the user, which indicates the
existence but not the location of the debt item in the
system’s artifact. For (3) planning and performing
refactoring steps, finally a combination of regression

Table 3: Decision support provided by analysis tools (hor-
izontal) with addressed refactoring tasks and competence
levels (vertical).

Task regression

testing

TD mea-

sured

smells

identified

ref. op-

tions

(1) behavior pre-

serving code mod-

ification

u – – –

(2) identification of

ref. candidates

– u – –

(3) planning and

performing ref.

steps

u u u –

(4) strategy selec-

tion

u u u u

testing, measured technical debt and also the location
of concrete smells (as provided by smell detectors, see
above) can be presented to the user. For addressing
the competence of (4) strategy selection, in addition
to the identified smells also the refactoring options
(provided by refactoring recommendation tools) can
be presented to the user. In this case, the challenge
is in prioritizing the given smells and evaluating the
already available options for refactoring. For corre-
sponding competence levels, also see Table 2.

Aesthetics. While the Goal of a refactoring game
can be generally seen in increasing the system quality
by removing smells or reducing technical debt score
(or parts of that, e.g. identifying smells), the Mission
as the narrative purpose of the game (as motivation
for the user) can differ from this. Via emotional re-
sponses from a game (evoked by the applied under-
lying game dynamics), a user is motivated to accom-
plish the set game Mission (Hunicke et al., 2004).
The MDA framework suggests 8 kinds of Aesthetic
Aspects for game designs (see Table 4).

Table 4: Exemplary aesthetic aspects for game designs (Hu-
nicke et al., 2004).

Fun aspect Description

(1) Sensation Game as sense-pleasure

(2) Fantasy Game as make-believe

(3) Narrative Game as drama

(4) Challenge Game as obstacle course

(5) Fellowship Game as social framework

(6) Discovery Game as uncharted territory

(7) Expression Game as self-discovery

(8) Submission Game as pastime

For refactoring games, the following exemplary
conditions can evoke aesthetic aspects. As a Chal-
lenge aspect can be seen the identification of smells
and/or performing of refactorings, especially when
performed under time pressure (Time Constraint;

see 1© in Fig. 2). In case the player acts in a cer-
tain role in a defined scenario (such as the role of
a software developer confronted with quality issues),
the Narrative aspect can be seen addressed. In gen-
eral, playing a refactoring game in team or compet-
ing against each other for (collectively) improving the
code quality may be regarded as Fellowship aspect. In
addition, also the Discovery can be addressed, e.g. by
letting the player explore system artifacts for identi-
fying refactoring candidates.

Game Types. With focus on games for the train-
ing of technical and engineering-related competences,
we can distinguish three Game Types, i.e. game-based
learning, gamification, and serious game. In particu-
lar, the term game-based learning reflects the use of
games for learning purposes (Prensky, 2003), which
also includes simple game designs with the goal to
mediate knowledge and understanding (i.e. lower lev-
els of competences in Bloom’s taxonomy). Gam-
ification can be defined as using game-design ele-
ments in non-gaming contexts (Huotari and Hamari,
2012). For software engineering (and refactoring in
particular), gamification can be regarded as extend-
ing development and engineering activities (which
are based on certain SE tools) by gaming elements,
also see (Garcı́a et al., 2017). Moreover, serious
gaming means playing games with a certain purpose,
e.g. educational or training games (Landers, 2014).
In addition (and in contrast to game-based learn-
ing), serious games are regarded to provide real-world
conditions (e.g. via video-based simulations (Con-
nolly et al., 2012)) and to target higher-level com-
petences. Furthermore, serious games and gamifi-
cation are often grouped together, but they differ re-
garding the scope/depth of game structure. Basically,
serious games aim to provide typical game mechan-
ics (e.g. consisting of game moves and goal/mission),
while gamification approaches focus on the (some-
times modest) application of gaming elements such
as certain (social) feedback mechanisms (e.g. points,
badges, leaderboards).

5 ANALYZING GAME
APPROACHES

Here we illustrate by example how the ontology can
be used for analyzing existing game designs. In ad-
dition, in Section 6, we also reflect on applying the
approach for reasoning about novel game designs.

In research literature, only a few approaches for
refactoring games can be identified. Based on current

Table 5: Comparison of exemplary refactoring-game approaches according to ontology-based design options.
Design Aspect (A) (Raab, 2012) (B) (Elezi et al., 2016) (C) (Khandelwal et al., 2017)
Tasks and Ac-
tions

Identify refactoring opportunities and perform cor-
responding refactorings in small code examples in
the framework of a learning path (with single- and
multiple-choice questions)

Identify code smells and select appropriate refac-
torings in real-world code base and trigger the ex-
ecution of Eclipse refactoring commands

Review source code produced by peers for identi-
fying code smells and bugs

Mission Master the set learning path by accomplishing the
learning units

Collectively improve quality of real-world code;
compete against fellow developers while collecting
points for performing code refactoring

Experience the use of gamification elements while
reviewing the code produced by peers for identify-
ing code smells and bugs

Aesthetic Aspect Challenge, discovery, sensation Challenge, fellowship, narrative Challenge, (discovery)
Target Compe-
tences

Identify smells and refactoring options as well as
perform refactorings (small examples)

Assess and prioritize refactoring candidates in
(real-world) code

Identify code smells (and bugs) while reviewing the
code (larger examples)

Prerequisite
Competences

Understanding the (basic) rules/symptoms for (1)
identifying selected smell types and (2) performing
refactoring steps

Using Eclipse refactoring tool Understanding the rules/symptoms for identifying
selected smell types (and bugs)

Smell types Basic stylistic code and design smells, based on
(Fowler et al., 1999)

Code smells according to Eclipse’s code smell de-
tector

Stylistic code smells (clean code)

Modified Artifacts Small code examples Real-world code base Code base produced by peers (in the framework
of a programming exercise)

Views / Feedback Editor/code, tangible cards/slides (with general
refactoring information), interactive screen for vi-
sualizing refactoring options (in terms of a graph,
see below)

Editor/code, leaderboards, activity feed, progress
bar

Editor/code, leaderboards, activity stream

Decision support Tangible cards with general information on se-
lected smell types as well as dependency graph
(between smell types and related refactoring tech-
niques)

List of identified and source-located refactoring
candidates as well as refactoring recommendation
and automation

General information on symptoms of a selected
set of most common code smells

Assessment /
Evaluation

Automated assessment of multiple-choice ques-
tions enhanced by human evaluation of code-
modification tasks

Tracking of command execution and automated
assessment in terms of a score via pre-defined dif-
ficulty levels

Peer reviews of code (i.e. actual task, no assess-
ment in narrow sense)

Rewards Several kinds of animations and sounds Score points and levels Likes, badges
Tools or games
integrated

– Eclipse refactoring tool Code-review tool

User interaction Informal, in terms of discussions between users Competitive and indirect via shared leaderboards Competitive and indirect via shared leaderboards
Game levels /
learning units

Path consisting of sequence of learning units Documented progress (e.g. levels, bar charts) –

Type of game Game-based learning Gamification Gamification

systematic literature reviews (SLRs) on serious games
in programming (Miljanovic and Bradbury, 2018),
gamification in software engineering (education) (Pe-
dreira et al., 2015; Alhammad and Moreno, 2018) and
further review, only the following four approaches for
applying games in the field of software refactoring
have been identified (i.e. with regard to gamification,
game-based learning or serious gaming).

(A) (Raab, 2012)
(B) (Elezi et al., 2016)
(C) (Khandelwal et al., 2017)
(D) (Haendler and Neumann, 2019)

Since approach (D) represents a design for serious
games proposed by the authors of this paper, we fo-
cus on the other three design approaches for analysis.
In Table 5, these identified approaches are evaluated
according to ontology-based design options and fur-
ther concept values of the ontology as described in
Section 4.2 . In particular, the values for the follow-
ing design aspects have been attributed to approaches
(A–C): addressed refactoring tasks and actions, the
game mission, the addressed aesthetic aspects, the
addressed (prerequisite and target) competences, the
kinds of refactoring candidates (smell types), the ar-
tifacts modified by the users, the provided views and
feedback as well as decision-support mechanisms, the
techniques of assessment and evaluation, the kinds of
rewards, whether pre-existing tools and games have
been included, the interactions between users, the

kind of game progress and the type of game (e.g.
game-based learning or gamification).

As described in Table 5, all three analyzed game
designs address e.g. the task (and target competence)
of identifying candidates for refactoring smells (i.e.
on code level). However, in addition to this, they
differ in terms of further tasks and (levels of) com-
petences. These differences are correlated with the
choice of game-design options, such as the game mis-
sion, the size of artifacts to be analyzed and modified,
as well as the kinds of decision and tool support.

In particular, approach (A) (Raab, 2012) proposes
a game-based learning approach for learning to iden-
tify smells and refactoring options as well as to per-
form refactorings in small code examples (also see
Table 5). The exercises (e.g. multiple-choice ques-
tions) are framed by a learning path with several
learning units. As decision support, tangible cards
with general information on selected smell types are
provided as well as an interactive screen with a visu-
alization of smell types and related refactoring tech-
niques. The results of multiple-choice questions are
assessed automatically, the code modifications by the
instructor. For this game, the theoretical knowledge
on rules/symptoms for identifying smells and per-
forming corresponding refactorings is required. The
target audience can be regarded as primarily novices,
e.g. in terms of (university) students aiming to gain
first practical refactoring competences.

Approach (B) (Elezi et al., 2016) in turn is based
on real-world code bases and integrates a refactoring
tool (in Eclipse) for identifying code smells and se-
lecting appropriate refactorings. The approach can be
classified as gamification, since it adds gaming ele-
ments (such as leaderboards, activity feed) to a real-
world setting with the purpose of fostering motiva-
tion. For each successful refactoring, a user scores
points. The mission is to collectively improve code
quality by competing against fellow developers. The
integrated tool provides high-level decision support
by suggesting refactoring candidates and then auto-
matically performing them. Thus, this game’s tech-
nical challenge is to prioritize the candidates. The
user’s performance is assessed by tracking the com-
mand execution within the Eclipse refactoring tool
and weighting them in scores according to their dif-
ficulty level. An important prerequisite competence
lays in using the applied refactoring tool. Software
developers can generally be regarded as the target
group of this approach.

Finally, approach (C) (Khandelwal et al., 2017)
proposes the gamification in performing code reviews
for answering the question whether a playful environ-
ment can foster users’ motivation. For this purpose,
code-review tools are extended by several gaming el-
ements (such as likes and badges). The users then re-
view code developed by peers for identifying smells
and bugs. For decision support only general informa-
tion on symptoms of a selected set of most common
code smells are presented to the user. Target audience
of this approach are primarily also software develop-
ers.

The analysis shows that existing approaches for
games in software refactoring (identified in recent
SLRs, see above) cover only a few of the possible as-
pects (i.e. design options) presented in the proposed
domain-ontology. In particular, games (B) (Elezi
et al., 2016) and (C) (Khandelwal et al., 2017) rep-
resent approaches for gamifying software engineer-
ing tools (i.e. a refactoring tool and a code-review
tool) by adding single gaming elements. Their fo-
cus is less on mediating competences than on fos-
tering users’ motivation to perform the activities. In
contrast, approach (A) (Raab, 2012) proposes game-
based learning for small code examples and simple
smell types and thus only addresses lower-level com-
petences according to Bloom’s taxonomy (see Table
2). All three approaches focus on smells on the code
level (e.g. stylistic code smells), whereas more com-
plicated smells can be found, for instance, on the level
of software design and architecture (Suryanarayana
et al., 2014) or in other kinds of artifacts.

6 DISCUSSION

In this paper, we have developed a domain ontology
for representing the concepts relevant for games in the
field of software refactoring. We have illustrated how
the resulting ontology and the corresponding design
aspects and options can be used for analyzing exist-
ing games. The analysis has shown by example that
the covered concepts are appropriate to analyze and
classify game designs for software refactoring. In ad-
dition, the analysis indicates that there is further po-
tential for game approaches, especially in the sense of
serious games, that aim to acquire practical compe-
tences in refactoring (Haendler and Neumann, 2019).

Game
Designer

Instructor Learner

Player

Mechanics

Target

Competences

Actual

Competences

Dynamics Aesthetics

creates game

plays game

mediates competences

acquires competences

Lead
Engineer

a

b

Learning

Environment

Engineer

Actual

Artifact Quality

improves artifact quality by refactoring

Intended

Artifact Quality

(optionally) de�nes mission/goal and tasks

Analysis

Tools
c

Figure 3: Layers relevant for development of game design.

Ontology-Supported Game Design. In addition to
the game analysis, we believe that the ontology can
support in designing novel game designs. As starting
point for designing games, we can consider the fol-
lowing three scenarios (also see Fig. 3):

a© From target competences to game. How to de-
sign a game that addresses certain competences?

b© From existing game to target competences.
How to use an existing gaming environment to ad-
dress certain competences?

c© From existing SE tools to game that addresses
target competences. How to gamify a develop-
ment environment in order to address certain com-
petences?
The developed ontology provides support for rea-

soning about game design from all three viewpoints.
Fig. 3 depicts an overview of the three layers relevant
for game designs in software refactoring covered by
the ontology. In case a© (see Fig. 3), the instructor is
primarily also in the role of the game designer (i.e. the
game infrastructure is devoted to learning purposes).
Starting from prerequisite and target competences,
she can consult the ontology for possible design op-
tions in game-design mechanics, e.g. what kinds of

actions/moves to be performed and which tools to in-
tegrate, and game dynamics, e.g. what kinds of infor-
mation presented to the user, and also regarding user
interaction. In case b©, the instructor aims to mod-
ify and adapt an existing gaming environment in or-
der to address certain (target) competences. Depend-
ing to existing game mechanics (and integrated tools),
she can explore the options for decision support and
feedback (provided by the tools) and consider user-
interaction and other (motivational) feedback mech-
anisms. Case c© describes the typical gamification
approach, i.e. based on existing SE tools and activi-
ties, it is aimed to add gaming elements. Starting from
the technical sub-domains in 4© and 5© in Fig. 2, she
can (based on applied SE tools) reflect on design op-
tions for game mechanics, dynamics and aesthetics
(see 1©) in order to address certain (target) compe-
tences (see 2© and 3©).

Further Potential. The development of the domain
ontology was driven by the motivation to better un-
derstand the concepts relevant for designing (train-
ing) games in the field of software refactoring. Thus,
its scope is focus on corresponding concepts. For a
broader application purpose, e.g. for designing and
analyzing games in computer programming and soft-
ware engineering, certain domain-specific concepts
need to be extended. However, we believe that the
resulting ontology can be used and adapted for other
technical domains. For instance, in case of design-
ing games for training requirements-engineering tech-
niques, the concepts in sub-domains 1© to 3© in Fig.
2 can be reused. For this purpose, concepts in 4© and

5© need to be replaced by corresponding concepts
(e.g. activities, artifacts and tools) for requirements
engineering.

7 CONCLUSION

In this paper, we presented an approach for devel-
oping a unifying ontology for representing concepts
and design options relevant for (educational) games in
software refactoring. For creating the ontology, con-
cepts from five related existing domain ontologies and
taxonomies from the fields of game design, software
refactoring and competence management have been
reused, combined and extended.

As a result of this process, a domain ontol-
ogy in terms of a meta-model documented as UML
class diagram is presented. The ontology provides
an overview of concepts (and dependencies between
concepts) relevant for games in software refactoring.
In addition to the model, possible design options (i.e.

ontology instances) are described in detail. More-
over, it has been demonstrated by example that the
ontology can be used to analyze existing gaming ap-
proaches and provides potential for supporting game
designers and instructors in the process of developing
novel refactoring-game designs.

Based on the analysis of existing approaches, we
see potential for games addressing further aspects in
order to promote practical competences and motiva-
tion in software refactoring. For future work, we plan
to extend our serious-gaming approach (Haendler and
Neumann, 2019) to a generic gaming framework for
refactoring that provides variable design options to
the instructor, e.g. in order to address different compe-
tence levels and allow the flexible integration of anal-
ysis tools.

REFERENCES

Alhammad, M. M. and Moreno, A. M. (2018). Gamifica-
tion in software engineering education: A systematic
mapping. J. Systems and Software, 141:131–150.

Alves, N. S., Mendes, T. S., de Mendonça, M. G., Spı́nola,
R. O., Shull, F., and Seaman, C. (2016). Identifica-
tion and management of technical debt: A systematic
mapping study. Information and Software Technology,
70:100–121.

Avgeriou, P., Kruchten, P., Ozkaya, I., and Seaman, C.
(2016). Managing technical debt in software engineer-
ing (dagstuhl seminar 16162). In Dagstuhl Reports,
volume 6. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik.

Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., and Bink-
ley, D. (2012). An empirical analysis of the distribu-
tion of unit test smells and their impact on software
maintenance. In Proc. of ICSM 2012, pages 56–65.
IEEE.

Bloom, B. S. et al. (1956). Taxonomy of educational objec-
tives. vol. 1: Cognitive domain. New York: McKay,
pages 20–24.

Britto, R. and Usman, M. (2015). Bloom’s taxonomy in
software engineering education: A systematic map-
ping study. In Frontiers in Education Conference
(FIE), 2015 IEEE, pages 1–8. IEEE.

Campbell, G. and Papapetrou, P. P. (2013). SonarQube in
action. Manning Publications Co.

CoderGears (2018). JArchitect. http://www.jarchitect.com/
[March 25, 2019].

Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T.,
and Boyle, J. M. (2012). A systematic literature re-
view of empirical evidence on computer games and
serious games. Computers & Education, 59(2):661–
686.

Elezi, L., Sali, S., Demeyer, S., Murgia, A., and Pérez, J.
(2016). A game of refactoring: Studying the impact
of gamification in software refactoring. In Proc. of the
Scientific Workshops of XP2016, page 23. ACM.

Femmer, H., Fernández, D. M., Wagner, S., and Eder, S.
(2017). Rapid quality assurance with requirements
smells. J. Systems and Software, 123:190–213.

Fontana, F. A., Braione, P., and Zanoni, M. (2012). Auto-
matic detection of bad smells in code: An experimen-
tal assessment. J. Object Technology, 11(2):5–1.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts,
D. (1999). Refactoring: improving the design of exist-
ing code. Addison-Wesley Professional.

Garcı́a, F., Pedreira, O., Piattini, M., Cerdeira-Pena, A.,
and Penabad, M. (2017). A framework for gamifica-
tion in software engineering. J. Systems and Software,
132:21–40.

Guizzardi, G., Herre, H., and Wagner, G. (2002). On the
general ontological foundations of conceptual model-
ing. In International Conference on Conceptual Mod-
eling, pages 65–78. Springer.

Haendler, T. and Frysak, J. (2018). Deconstructing
the refactoring process from a problem-solving and
decision-making perspective. In Proc. of the 13th In-
ternational Conference on Software Technologies (IC-
SOFT), pages 363–372. SciTePress.

Haendler, T. and Neumann, G. (2019). Serious refactor-
ing games. In Proc. of the 52nd Hawaii International
Conference on System Sciences (HICSS), pages 7691–
7700.

Haendler, T., Neumann, G., and Smirnov, F. (2019). An
interactive tutoring system for training software refac-
toring. In Proc. of the 11th International Conference
on Computer Supported Education (CSEDU).

Hamari, J., Koivisto, J., and Sarsa, H. (2014). Does gami-
fication work?–a literature review of empirical studies
on gamification. In Proc. of 47th Hawaii International
Conference on System Sciences (HICSS), pages 3025–
3034. IEEE.

Hunicke, R., LeBlanc, M., and Zubek, R. (2004). MDA: A
formal approach to game design and game research. In
Proc. of the AAAI Workshop on Challenges in Game
AI, volume 4, pages 1–5. AAAI Press San Jose, CA.

Huotari, K. and Hamari, J. (2012). Defining gamification: a
service marketing perspective. In Proc. of the 16th in-
ternational academic MindTrek conference, pages 17–
22. ACM.

Kan, S. H. (2002). Metrics and models in software qual-
ity engineering. Addison-Wesley Longman Publish-
ing Co., Inc.

Khandelwal, S., Sripada, S. K., and Reddy, Y. R. (2017).
Impact of gamification on code review process: An
experimental study. In Proc. of the 10th Innovations
in Software Engineering Conference, pages 122–126.
ACM.

Kitchenham, B. A., Travassos, G. H., Von Mayrhauser, A.,
Niessink, F., Schneidewind, N. F., Singer, J., Takada,
S., Vehvilainen, R., and Yang, H. (1999). Towards an
ontology of software maintenance. J. Software Main-
tenance: Research and Practice, 11(6):365–389.

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy:
An overview. Theory into practice, 41(4):212–218.

Kruchten, P., Nord, R. L., and Ozkaya, I. (2012). Technical

debt: From metaphor to theory and practice. IEEE
software, 29(6):18–21.

Landers, R. N. (2014). Developing a theory of gamified
learning: Linking serious games and gamification of
learning. Simulation & Gaming, 45(6):752–768.

Masapanta-Carrión, S. and Velázquez-Iturbide, J. Á.
(2018). A systematic review of the use of Bloom’s
taxonomy in computer science education. In Proc. of
the 49th ACM Technical Symposium on Computer Sci-
ence Education, pages 441–446. ACM.

Miljanovic, M. A. and Bradbury, J. S. (2018). A review
of serious games for programming. In Joint Interna-
tional Conference on Serious Games, pages 204–216.
Springer.

Misbhauddin, M. and Alshayeb, M. (2015). UML model
refactoring: a systematic literature review. Empirical
Software Engineering, 20(1):206–251.

Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur,
A.-F. (2010). Decor: A method for the specification
and detection of code and design smells. IEEE Trans-
actions on Software Engineering, 36(1):20–36.

Noy, N. F., McGuinness, D. L., et al. (2001). Ontology
development 101: A guide to creating your first ontol-
ogy.

Object Management Group (2015). Unified Mod-
eling Language (UML), Superstructure, Version
2.5.0. http://www.omg.org/spec/UML/2.5 [March 25,
2019].

Opdyke, W. F. (1992). Refactoring object-oriented frame-
works. University of Illinois at Urbana-Champaign
Champaign, IL, USA.

Paquette, G. (2007). An ontology and a software framework
for competency modeling and management. Educa-
tional Technology & Society, 10(3):1–21.

Paulheim, H. (2017). Knowledge graph refinement: A sur-
vey of approaches and evaluation methods. Semantic
web, 8(3):489–508.

Pedreira, O., Garcı́a, F., Brisaboa, N., and Piattini, M.
(2015). Gamification in software engineering–a sys-
tematic mapping. Information and Software Technol-
ogy, 57:157–168.

Prensky, M. (2003). Digital game-based learning. Comput-
ers in Entertainment (CIE), 1(1):21–21.

Raab, F. (2012). Codesmellexplorer: Tangible exploration
of code smells and refactorings. In Visual Lan-
guages and Human-Centric Computing (VL/HCC),
2012 IEEE Symposium on, pages 261–262. IEEE.

Suryanarayana, G., Samarthyam, G., and Sharma, T.
(2014). Refactoring for software design smells: Man-
aging technical debt. Morgan Kaufmann.

Tempero, E., Gorschek, T., and Angelis, L. (2017). Bar-
riers to refactoring. Communications of the ACM,
60(10):54–61.

Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A. (2008).
JDeodorant: Identification and removal of type-
checking bad smells. In Proc. of 12th European Con-
ference on Software Maintenance and Reengineering
(CSMR 2008)., pages 329–331. IEEE.

ZEN PROGRAM (2018). NDepend.
http://www.ndepend.com/ [March 25, 2019].

